
14. Yu. S. Kachanov, "Resonance wave nature of the transition to turbulence in a boundary 
layer," in: Modeling in Mechanics [in Russian], Vol. i, No. 2 (1988). 

15. V. N. Zhigulev and A. M. Tumin, Origin of Turbulence [in Russian], Nauka, Moscow (1987). 

COMPUTING THE COMPRESSIBLE LAMINAR BOUNDARY LAYER ON A SHARP BODY 

OF BIELLIPTIC SECTION 

V. N. Vetlutskii D~C 532.526 

The problem of determining the parameters of a three-dimensional boundary layer is 
very pertinent, since its solution gives the distribution of friction and heat flux at the 
surface of the immersed body. From numerical solution of the full boundary layer equations 
we find the flow parameters: velocity components, temperature and density, from which one 
obtains new knowledge of the whole flow picture. 

Most papers on computing the laminar three-dimensional boundary layer deal with incom- 
pressible flow [1-5]. At supersonic speed of the incident flow it has been studied most 
frequently on blunt bodies (see, e.g., [6-9]). The three-dimensional compressible boundary 
layer on sharp bodies was examined in [10-13]. The angles of limiting stream lines computed 
in [i0] and the velocity profiles on a circular cone at angle of attack were compa1:ed with 
experiment in [ii]. The friction factor distributions were measured on ogive-cylindrical 
bodies in [12, 13]. 

The present paper describes a statement of the problem and computing algorit~hms for 
the compressible laminar boundary layer on a sharp body. Computed results are presented for 
a body of bielliptic cross section at Mach nmmber M~ = 2 and angles of attack ~ = 0-i0 ~ 
The evolution of the three-dimensional boundary layer with variation of angle of attack is 
described. 

i~ We consider flow over a sharp body of fuselage shape, immersed in a supersonic 
stream of gas of Mach number M~. The body has a plane of symmetry, which contains the veloc- 
ity vector of the incident flow. The vector makes the angle of attack ~ with a certain axis 
of the body. In this case the entire flow also has a plane of symmetry. 

The body surface is assumed to be smooth, and its equation is given in a cylindrical 
coordinate system r = r(~, ~). The coordinate g is reckoned from the body vertex along its 
axis, ~ is the meridional angle in the transverse section, and ~ = 0 corresponds to the wind- 
ward symmletry plane. The equations of the three-dimensional compressible laminar boundary 
layer have been written in the nonorthogonal coordinate system (~, q, ~), fixed in the body 
surface [14]. The coordinate q coincides with the local surface normal. 

The body nose is assumed to be conical. In that case the inviscid flow there is coni- 
cal, and the boundary layer equations have a similarity solution dependent on the variables 

~, i = ~/v~ [15]. Therefore in this paper, in addition to the coordinate q we introduce the 
variable %, and instead of the components of the velocity v directed along the normal to the 
body surface, we introduce the mass flux 

Here and below gik are the metric coefficients of the surface. Of course, with this substi- 
tution we can avoid the solution depending on the longitudinal coordinate ~ only on the con- 
ical nose. On the rest of the surface the dependence of the boundary layer thickness on $ 
in the new variable X will be weaker. 

We now write two equations of motion, the energy equation, and the continuity equation 
in the variables ($~ %, ~) in the following form [16]: 
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The equation of state p = xM~2p/T closes the system. The functions P and Q depend on the 
components of velocity u and w in the boundary layer and at the outer edge. The remaining 
symbols are conventional. All the parameters are dimensionless relative to the body length 
X and their values in the incident flow. The pressure is referenced to twice the dynamic 
head. 

In substituting the boundary conditions for the equations of the three-dimensional 
boundary layer one must be guided by a conception of zones of influence and dependence [17]. 
With its use the simple rule has been established: the velocity components and the temper- 
ature are given at two boundaries through which the fluid flows into the region examined, 
and conditions are not imposed on the remaining boundaries. This rule is based on proof of 
a uniqueness theorem for a model equation [18]. 

The main role in the three-dimensional boundary layer is played by the linear surfaces 
formed by normals to the flow surface and the containing stream lines. The velocity vectors 
coming from any generator of their normals lie in a single plane tangent to this linear sur- 
face. We shall call such a surface inflow if the stream lines come together at its surface, 
and outflow if the opposite is true. 

The system of equations (i) was solved in the region ~($ ~ g0, 0 5 ~ ! r 0 ! % 5 he(g , 
r under the following boundary conditions: 

= L: u - - u o ( X ,  O, ~v = ~Vo(~,, O, Y = To(L O; 

= 0 :  Ou/O~ = O, i v = O ,  OT/a~ = O; 

) ~ = 0 :  u = O ,  w = O ,  ] = 0 ,  T = T ~ ;  

p = p~(~, O .  

Here the section ~ = ~0 corresponds to the conical body nose, and therefore the profiles of 
u0, v0, To derive from the similarity solution. On the plane r = 0 we assign the symmetry 
conditions in the case when it is an outflow surface, and we cannot assign conditions if the 
opposite is true. If the plane ~ = ~+ coincides with the plane of symmetry (~+ = 180~ 
then the situation with boundary conditions is similar to the plane ~ = 0. The plane ~ = ~+ 
can be taken as not coinciding with the symmetry plane. There are no boundary conditions on 
it if the fluid flows through it. 

On the body surface % = 0 we assumed the usual conditions for a viscous fluid, i.e., 
no slip and impermeability, and equality of the gas and wall temperatures. At the outer edge 
of the boundary layer X = Xe(~, ~) the flow parameters Ue, We, Te, Pe are derived from com- 
puting flow of an inviscid gas over the given body. 

2. On the conical nose the boundary layer problem has a similarity solution. The 
transformation of system (i) for this region was given in [16]. 

In this paper the body surface and the parameters at the outer edge were assigned in 
the form of two-dimensional tables. A spline interpolation of these data, and recomputation 
of the flow parameters to the coordinate system fixed in the body surface has also been de- 
scribed in [16]. The difference is that we used smoothing splines [19]. 
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In most three-dimensional boundary layer problems examined there is an outflow surface, 
which usually coincides with the plane of symmetry. The flow on the outflow surface is not 
described by the equations of the planar boundary layer, and depends on the second derivative 
of the pressure in the transverse direction [14]. However, the solution on this surface can 
be obtained independently of the solution in the remaining region. 

The most widely used difference scheme for solving the three-dimensional boundary layer 
equations makes substantial use of the solution obtained on an outflow surface [I, 2, 20]. 
But the plane of synnnetry can be an inflow surface, and the position of the outflow surface 
is not known beforehand. Then it is very difficult to use these schemes [21]. But if there 
is no outflow surface in the boundary layer, as is the case in a number of variants from [18] 
and in the present work, then these schemes are generally inapplicable. 

We use a two-layer implicit difference scheme with weighting factors, described in de- 
tail in [4, 18]. With a value of weighting factor of 8 = 0.5 it is a second-order approxima- 
tion in all the coordinates. In the example of a linear equation its absolute stability for 
0.5 _< 0 <_ 1.0 was proved [18]. The advantage of this scheme is that we can include an out- 
flow surface and it is fully applicable if the latter is not present. 

This difference scheme was used with constant step size in each direction, and there- 
fore to increase the computational accuracy we used stretching of coordinates fixed in the 
surrounding direction and automatically normal to the surface [16]. 

For a three-dimensional boundary layer there is great interest in the components of the 
friction stress cfl , cf2 and the Stanton number on the body surface. The similarity coeffi- 

d. 

cients cf1.. , cf2* , St* were computed as follows: 

* 1 - 2 = 2 ) ,  

( , 2  o * * s t *  * ~ * 2  4:_ c~,, ~ ~ o j l c l .  ~ c I C/~ - .  . . 

St = q k=o,"(p~Uooep ( T ~  - -  T , 3 )  

(Re~ is the Reynolds number based on the incident stream parameters and the distance from 
the body vertex, and cos~ = g12/(gllg22)i/2). 

The computing algorithm provides for automatic rejection of regions of boundary layer 
separation in the vicinity of the plane of symmetry of the problem from the windward and the 
leeward sides [16]. 

3. The efficiency of the algorithm and the subroutine was checked on an example of 
determining the boundary layer on an elliptic cone [16]. 

The investigation of the three-dimension compressible boundary layer was accomplished 
on the surface of a sharp body of bielliptic cross section. The nose section with ~ ~ 0.i 
is a circular cone with a semi-vertex angle of 15 ~ . The upper half is a continuation of the 
cone, and the lower half is a body with transverse sections in the shape of semi-ellipses. 
The lower semi-axis of these ellipses a varies according to the law 
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/0.26795 ~, ~ ~ 0.t, 
a = / - -  0.55823 ~ + 0,26795 ~1 + 0.026795, ~ = ~ --  0A, 0A ~ ~ ~< 0,5, 

L0,098248, 0,5 ~ ~ ~< 1,0. 

Hence, it can be seen that for ~ = 0.i the lower generator has continuous first and second 
derivatives, and for $ = 0.5 only the first derivative. The ratio of the semi-axes of the 
ellipse varies from i at $ S 0.i to 2.73 at $ = i. 

To obtain the inviscid flow parameters we used a program described in [22]. The calcu- 
lations were performed for M= = 2 and ~ = 0, 5, i0 ~ Figure i shows the static pressure 
distribution on the body surface as a function of the axial coordinate for ~ = 0, 90, 180 ~ 
and ~ = i0 ~ On the conical nose the pressure does not vary with $, and in the transition 
section (0.I ~ $ S 0.5) it falls, and falls more sharply on the windward side. In the sec- 
tion where the lower generator is parallel to the axis (~ > 0.5) the pressure increases, 
which can cause boundary layer separation in this region. If we draw the pressure distribu- 
tion in the transverse section, we obtain the following picture. On the conical nose the 
maximum pressure occurs on the windward generator (~ = 0), and the transverse flow is paral- 
lel from the windward side to the leeward side. Later, as $ increases the maximum pressure 
moves to a lateral position, which can lead to a change of direction of the transverse flow. 

For ~ = 5 ~ the nature of the pressure distribution is analogous to that described. For 
= 0 the maximum pressure is always located in the leeward plane of symmetry (~ = 180~ 

where the pressure practically does not vary. Its behavior as a function of ~ for ~ = 0 is 
like that in the other two variants. 

With the aid of the inviscid flow data for the above variants we computed the boundary 
layer for relative wall temperature T w = i. The number of rays in the layer was taken equal 
to 21 and 41. The same values were chosen for the number of nodes on a ray. The circumfer- 
ential coordinate could be stretched, the step size in physical variables varying by a factor 
of 4. 

Figures 2-4 show the distributions of cfz* in different cross sections for ~ = 0, 5, 
i0 ~ The graphs show values of the coordinate ~ corresponding to each curve. For ~ = 0 
(see Fig. 2) on the conical nose ($ ! 0.i) the flow parameters do not depend on the circum- 
ferential coordinate ~, and therefore cfl is constant. In the transition section 0.i ~ ~ 
0.5 on the windward side cf1* first increases, and then decreases. In the interval 0.5 

~ i the pressure on the windward side increases and the flow decelerates in the boundary 
layer. At ~ = 0.6 flow separation occurs in the vicinity of the plane r = 0. Later this 
region was excluded from the computation. The maximum of cf1* increased steadily and its 

location moved close to ~ = 83 ~ . On the leeward side cfz* varied only slightly. 

In the variant described the plane r = 0 is an inflow surface right up to the separation 
point. Then, due to the pressure increase the stream lines near the surface begin to move 
away from the plane of symmetry. This phenomenon is illustrated well in Fig. 5, which shows 
the distribution of cf2* in the section $ = 1 for ~ = 0, 5, i0 ~ It can be seen that for 

= 0 on the windward side the transverse overflows near the wall are positive, although 
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at the outer edge of the boundary layer they are negative everywhere. Strictly speaking, 
here the perturbations from the left boundary r = 15 ~ propagate within the computing region. 
But the angle between the stream lines and the coordinate lines is so small that the pertur- 
bations from the boundary can propagate along r to the end of the body through not more than 
i0 ~ In this variant the plane r = 180 ~ is a divergent surface everywhere, except for the 
conical nose, where the flow is axis~nnmetric. 

For ~ = 5 ~ (see Fig. 3) on the conical nose g 5 0.i the value of cfl* is a maximum for 

= 0, where the outflow surface is located. In the transition section 0.l 5 ~ i 0.5 the 
maximum pressure is displaced to a lateral position, and behind it follows the maximum of 
cfl* with a delay. Here the transverse overflows near the wall for g = 0.35 change direc- 

tion from positive to negative, and the outflow surface vanishes. In the section 0.5 ~ $ ! 
1 where the windward generator is parallel to the axis the pressure for ~ = 0 increases, 

cfl* drops, and for g = 0.9 the boundary layer separates in a narrow region. The increase 

of pressure for ~ = 0 produces a weak local maximum relative to ~, and nevertheless the 
plane ~ = 0 for ~ ~ 0.7 becomes an inflow surface, and the transverse overflows are parallel 
to the windward plane of symmetry in the region 0 ~ ~ ~ 95 ~ (see Fig. 5). The leeward plane 
of symmetry ~ = 180 ~ in the variant is an inflow surface over the whole body length. The 
maximum of cfi* moves from the windward side to a lateral position, gradually increasing. 

Beginning at a certain angle of attack, on the leeward generator of the sharp body one 
cannot construct a solution of the boundary layer equations with continuous derivatives in 
the transverse direction [15]. In our work the attempt to carry out the solution over the 
entire flow region led to the appearance of oscillations in ~. To avoid these, the comput- 
ing region for ~ = i0 ~ (see Fig. 4) was restricted to the plane ~ = 170 ~ , through which the 
gas exits, and the boundary conditions of it were not applied. As can be seen from Fig. 4, 
the behavior of cfl* is analogous to that of the previous variant, the only difference being 

that the value cfi* in corresponding sections on the windward side is somewhat higher, and 

on the leeward side somewhat lower than for the case ~ = 5 ~ . Therefore cfl* for ~ = 0 does 

not go to zero, i.e., separation does not occur. Regarding the outflow surface for r = 0, 
it ends at the section g = 0.5. Later towards the end of the body the stream lines near the 
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body surface draw close to the plane of symmetry ~ = 0, and move away from it near the outer 
edge of the boundary layer. This is illustrated in Fig. 6, which shows graphs for ~ = i0 ~ 
of the transverse component of velocity w in the boundary layer on the windward and the lat- 
eral position of the body at the section $ = i. 

We note, that the values of cfl* in the lateral position beyond the transition section 

are quite close for all three variants. For example, the difference of values at the point 
of maximum for $ = 0.5 is 5%, and for g = i it is 3.5%. However, the position of this point 
is shifted a little to the windward side as the angle of attack increases. 

The distribution of the similarity Stanton number St* is shown by a broken line in the 
latter section in Figs. 2-4. By comparing the curves of St* with those of cf1* for g = 1 

one can see they are roughly similar. An analogous situation is observed also in the other 
sections. This phenomenon can be explained by the approximate validity for such complex 
flows of Reynolds analogy between heat transfer and friction [23]. 

The computed results have shown a significant influence of angle of attack on the flow 
picture in the boundary layer. With increase of ~ from 0 to i0 ~ one observes the following 
qualitative changes. On the windward generator r = 180 ~ theoutflow plane transforms into 
an inflow plane. Although the character of the pressure distribution along the windward 
generator for these angles of attack is the same, the flow picture here changes substan- 
tially. The inflow surface with subsequent separation at $ = 0.6 converts into an outflow 
surface in sections $ < 0.35; 0.7 < $ < 0.9 for ~ = 5 ~ and in the section $ < 0.5 for ~ = 
i0 ~ In the remaining sections in both variants the stream lines near the body move close 
to the plane ~ = 0 and near the outer edge of the boundary layer they move away from it. 
Thus, there is no outflow surface in these regions. 

The decrease of the radius of curvature in the transverse direction on the lateral po- 
sition of the body causes an increase there of the similarity component of the friction fac- 
tor cf1* at all angles of attack. On the windward side with increase of angle of attack it 
changes both qualitatively and quantitatively. With increase of ~ the transverse component 
cf2* increases from negative values to positive values everywhere, except for the windward 

side, where the changes are opposite in nature. For ~ = 5 and I0 ~ the maximum pressure is 
moved to the lateral position, and on the windward side a positive pressure gradient appears 
in the transverse direction, which turns around the flow near the wall towards the windward 
generator. 
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TURBULENT INCOMPRESSIBLE FLUID FLOW IN A CHANNEL WITH UNILATERAL 

MASS TRANSFER 

Sh. A. Ershin, U. K. Zhapbasbaev, T. B. Kozhakhmetov, 
and A. V. Smol'yaninov 

UDC 532.542 

The great practical value of channel flows with mass transfer through a porous wall 
evokes extensive interest [1-3]o If laminar flow analysis can rely on the solution of the 
exact equations of viscous fluid motion, then the turbulent motions most important in prac- 
tical respects, are unfortunately not yet subject to a reliable theoretical analysis. Well- 
founded expectations are bestowed on modern turbulence models whose perfection may result in 
the possibility of a theoretical computational prediction of many complex turbulent flow 
modes. However, without a sufficient base of experimental data it is difficult to compute 
successful forward progress except success should be expected for an obligatory combination 
of empirical and analytical approaches to the problem. Such empirical material for flows 
in channels with smooth impermeable walls has been obtained in [4-7] and, for example, with 
rough walls in [8]. As regards flows in channels with mass transfer through the wall, then 
insofar as we know analogous investigations are still nonexistent. The present paper is a 
part of a general investigation of turbulent flow in a plane channel with mass transfer 
through porous walls~ 

i. The tests were performed on an apparatus that is a flat channel of width 2B = 0.45 
m and height 2H = 0.034 m operating in the pressure mode. The fan had a soft connection 
with an air duct of about 20 m extent, from which air is delivered again through a soft con- 
nection to a receiving diffuser at the input of the stabilized channel section 140H in 
length. Therefore, the possibility is eliminated of transmission of mechanical vibrations 
from the fan and metal air duct to the apparatus. The metal diffusor is executed according 
to Vitoshinskii and is connected to the experimental apparatus through a system of networks 
and gratings. The stabilized channel section is fabricated from 0.03 m wood chip shavings 
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